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Abstract. We carry out comparative studies of random walks on deterministic Apollonian networks (DANs)
and random Apollonian networks (RANs). We perform computer simulations for the mean first-passage
time, the average return time, the mean-square displacement, and the network coverage for the unrestricted
random walk. The diffusions both on DANs and RANs are proved to be sublinear. The effects of the network
structure on the dynamics and the search efficiencies of walks with various strategies are also discussed.
Contrary to intuition, it is shown that the self-avoiding random walk, which has been verified as an optimal
local search strategy in networks, is not the best strategy for the DANs in the large size limit.

PACS. 89.75.Hc Networks and genealogical trees – 05.40.Fb Random walks and Levy flights – 89.75.Fb
Structures and organization in complex systems

In the past few years, much attention has been devoted to
the characterization and modelling of a wide range of com-
plex systems that can be described as networks [1–3]. The
topological properties of real-world networks have been
studied extensively. But an even more intriguing task, and
a natural extension of these studies, is to understand how
the topological structure of networks affects dynamics tak-
ing place on top of them [4]. Many dynamical processes
have been studied on complex networks, such as epidemic
spreading [5], percolation [6], synchronization [7], and so
on. These works have shown that topologies of networks
play an important role in determining the system dynam-
ical features.

Random walk has been used for modelling various dy-
namics in physical, biological, and social contexts [8]. It
could also be a mechanism of transport and search on
networks [9–11] when no knowledge of the global prop-
erties of the underlying networks is available. Thus one
interesting problem is to study the dynamical behavior
of a random walker on networks with different topolog-
ical properties. Much is known about random walks on
both regular and random networks [12,13]. In addition,
there have been several recent studies of random walks on
small-world networks (SWNs) [14–17] and scale-free net-
works (SFNs) [9,18–20]. The impacts of the heterogeneous
topological structures of the networks on the nature of the
diffusive and relaxation dynamics of the random walk have
also been probed recently [9,10,21,22].

In this paper we investigate walk processes tak-
ing place upon the deterministic Apollonian network
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(DAN) [23] and its variation, the random Apollonian net-
work (RAN) [24]. The DAN can be defined based on the
ancient problem of filling space with spheres, first tack-
led by the Greek mathematician Apollonius of Perga [25].
That is, starting with an initial array of touching disks,
which have curvilinear-triangle interstices, disks are added
inside each existing interstice in the present configuration,
such that these disks touch each of the disks bounding the
curvilinear triangles. Each of these added disks give rise
to three smaller interstices, which will be filled in the next
generation. This process is then repeated for successive
generations. The DAN is constructed based on this pro-
cess by considering each disk as a node, and the disks in
contact as the corresponding nodes connected. For each
new node added to a certain triangle (corresponding to
the curvilinear-triangle interstice) and linked to the three
vertices, three new triangles are created in the network,
into which nodes will be inserted in the next generation.
The DAN is a typical regular network, which has deter-
ministic size when the number of its generations is certain.
Different from recursive constructing of the DAN [23], the
RAN starts with a triangle containing three nodes. Then,
at each time step, only one triangle is randomly selected
to add a new node linking to its three vertices [24]. Both
networks are simultaneously scale-free, small-world, Eu-
clidean, and space filling. They have attracted increasing
interest recently [26,27].

We carry out the walk along the bonds of a given net-
work as follows: (i) there is only one walker on the net-
work at a time; (ii) the random walker is injected onto
a randomly chosen node on the network, a new node for
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each walker. We will call this node the “origin” of the
walk; (iii) at each discrete time step t, the walker will
hop to one nearest neighbor of its current node accord-
ing to one certain strategy. The walk strategies adopted
by the walker include the following: unrestricted random
walk (RW), no-back (NB) walk, no-triangle-loop (NTL)
walk, no-quadrangle-loop (NQL) walk, and self-avoiding
(SA) random walk. For the RW, the walker may unre-
strictedly hop to a nearest-neighbor node by randomly
taking one of the links. It forgets all information about
its past. The NB walk implies that a random walker, if
possible, will not return to the node it was situated at the
previous step. Similarly, the NTL and NQL random walks
mean that the walker will try to avoid walking in loops,
with three or four edges, respectively, unless there is no
other choice. We note that the NQL walk also includes the
NTL, which means it eliminates quadrangle loops as well
as triangle loops. Finally, the definition of the SA walk as
a search strategy in this paper is different from that of
the former SA walk and the kinetic growth self-avoiding
(KGSA) walk [28–31], both of which were used in polymer
statistics. In the former SA walk one randomly chooses the
next step from among the nearest-neighbor nodes (exclud-
ing the previous one); if it happens that one chooses an al-
ready visited node, the walk stops. In the KGSA walk [29]
one instead randomly chooses the next step from among
the nearest-neighbor unvisited nodes and stops growing
only when none are available. Here, defined as a searcher,
the SA walker tries to avoid revisiting nodes in the same
way as the KGSA walker, however it stops on finding the
target, allowing compulsive revisit if no nearest-neighbor
unvisited node is left [20] (hops to a nearest-neighbor node
by randomly taking one of the links). Clearly, this SA walk
also includes the NTL and NQL walks.

In the following, we will investigate walk processes
on the DANs and RANs. The corresponding results on
the Watts-Strogatz (WS) (K = 3, p0 = 0.1) [32] and
Barabási-Albert (BA) (m = m0 = 3) [33] networks are
also presented for comparison. Note that the four networks
have the same average degree 〈k〉 = 6.

In the context of transport and search, which inti-
mately relate to random walk mechanism, the mean first-
passage time (MFPT) and its special case, the average
return time (ART) are important characteristics. The
MFPT of a random walker from origin i to another node j
is denoted by 〈Tij〉. The ART, i.e., the average time a
walker needs to return to the origin i, is denoted by 〈Tii〉.
For a finite network which consists of N nodes, with i
and j belong to [1, N ], Noh and Rieger [18] have proved
that the MFPT is negatively correlated with Kj (the de-
gree of node j), and 〈Tii〉 has a very simple form as

〈Tii〉 = N/Ki (1)

with N =
∑

j Kj (j = 1, . . . , N) and Ki the degree of
node i. That is to say, nodes with higher degrees are vis-
ited earlier and more frequently, and then targets on these
nodes can be found more easily than on nodes with smaller
degrees. We simulate the MFPT and ART of each node
for the DAN and RAN with N = 9844 nodes (9 genera-

Fig. 1. (Color online) The mean first-passage times 〈Tij〉 (up-
per panels) and the average return time 〈Tii〉 (lower panels)
averaged over the results of given k’s, for the DANs (left) and
RANs (right). Fitted linear relations of average return time
(solid lines) are obtained with a slope of −1 for both DANs
and RANs.

tions of the DAN). The MFPT of a given node j denoted
by 〈Tj〉 is defined as,

〈Tj〉 =

∑N
i=1,i�=j〈Tij〉
N − 1

(2)

with all other nodes i in the network as the origin, so that
the choice of node i will not influence the result of 〈Tj〉.
After averaging over the MFPT and ART of all the nodes
for a given degree k, the results as a function of node de-
gree are depicted in Figure 1. We can see that, the linear
property of the log-log plot of ART (the lower panels) is
in excellent agreement with equation (1), and the nega-
tive correlation between MFPT and k is also present (the
upper panels).

Then, let us discuss the search efficiencies of the above-
mentioned five walk strategies on the four networks. De-
signing efficient search strategies in networks is an im-
portant issue related to random walks [9,18,20]. Here we
suppose that, at every step, the walker adopting various
strategies can inspect the nearest neighbors of its present
node; if the target is at one of them, this round of search
is over. The search time is defined as the average number
of steps needed to complete the search. The search pro-
cesses with the five strategies are performed on networks
with different sizes, and the search times are averaged over
50 realizations of the networks and 200 randomly selected
couples of origins and targets for each of them. One can
find some common features in Figure 2. For example, it is
remarkable that the search times of various strategies on
the four networks have the same scaling properties with
the slope approximately equal to 1 (except for the SA
walk in the DANs). As another example, the RW walk is
always the most inefficient search strategy for all the four
networks.

There still exist some obvious differences among them.
We observe that the DANs are somewhat well suited to
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Fig. 2. (Color online) Average search times of various search
strategies on the RANs (a), DANs (b), BA networks (c), and
WS networks (d) with average degree 〈k〉 = 6. The slopes of
all the scaling relationships are approximately equal to 1.

search, with the average search times of all the five strate-
gies smaller than those on the other three networks. On
the other hand, only for the BA network, the search effi-
ciencies of the NB, NTL and NQL walks (see Fig. 2c, and
also Ref. [20]) nearly collapse into one. One can imagine
that an unrestricted RW walker may be trapped into a
local region and revisit node there by reasons of reversal
and walking in loops. However the searchers, such as the
NB, NTL and NQL walkers who avoid revisiting nodes,
can escape from those regions more easily, and thus im-
prove the search efficiencies. Furthermore, in the networks
with weak clustering effect, where loops do not prevail, the
NTL and NQL walkers, who adopt increasingly stricter
rules to avoid revisiting nodes than the NB walker, can
not capitalize on their advantages. Therefore, their search
efficiencies keep very close to or even collapse into that of
the NB walker. As a consequence, we can conclude that
different clustering properties of the underlying networks
induce efficiency differences among the above mentioned
strategies. In return, the efficiencies of those search strate-
gies will reflect the clustering effect of the networks. The
collapse on the BA network is due to its smallest clustering
coefficient in the four networks. For the RANs and DANs
(see Figs. 2a and 2b), the efficiency improvements of the
NTL and NQL walks compared to the NB walk reflect the
fact that high clustered nodes are popular in them.

The SA walk was proved to be generally the most effi-
cient strategy if the walker is not aware of the global struc-
ture of the underlying network [20]. However, a counterex-
ample is the SA walk on the DANs. Figure 2b shows the
average search times on the DANs with generations rang-
ing from 3 to 8, corresponding to network sizes 16, 43, 124,
367, 1096, and 3283, respectively. In contrast to the con-
clusions obtained in reference [20], the SA walk does not
markedly reduce the search time and performs even more
inefficiently than the NTL and NQL walks when there are
more than 6 generations of the DANs.

Table 1. The critical threshold Pc for PSP and average path
length 〈L〉 of the four networks with N = 9844 nodes.

DAN RAN BA WS
Pc ≈ 4/N 0.03 0.3 0.63
〈L〉 4.06(5) 5.40(9) 4.27(9) 8.61(9)

We argue that the following factor should be taken
into account to understand the bad performance of the
SA walk on the DANs. According to the former analysis
of MFPT, we knew that the nodes with higher degrees
would be visited earlier by the walker, and thus would
have a larger probability to be avoided earlier if the walker
adopts the SA strategy. In other words, the SA walker may
preferentially avoid high-degree nodes, which is similar to
the process of the intentional removals aiming at these
nodes. Therefore, to some extent, the SA search process
on networks can be considered as an example of initen-
tional attack [34] or preferential site percolation (PSP)
on networks. The intentional attack means the removal of
nodes and their incident edges targeting on nodes with
high degrees, and the critical threshold for PSP denoted
by Pc is a measure of how stable the network is against
this attack. When the fraction P of the removed nodes
exceeds Pc, the network disintegrates into smaller, discon-
nected fragments. The DANs and RANs are much frailer
than the BA and WS networks under intentional attack
(see Tab. 1 for Pc of networks with N = 9844 as an exam-
ple), because of the crucial importance of the high-degree
nodes to the network integrity. Moreover, when the net-
work size is sufficiently large (e.g. composing of more than
6 generations’ nodes), the DAN is more sensitive to inten-
tional attack than the RAN [24].

We know that the walker, if rigorously avoiding visit-
ing those crucial high-degree nodes, can never reach some
regions of the network from its current position, as if the
network is intentionally attacked and disintegrates into
parts, e.g. the walker avoiding visiting the first 4 greatest-
degree nodes of the DAN will wander only in one of the
three disconnected clusters. Similarly, for the SA walker,
the search is indeed slowed down by avoiding revisiting
those nodes. A direct mapping from the search process of
the SA walk to the question of the intentional attack is
not rigorous, due to the compulsive revisiting which en-
sures the accessibility to the targets. However, considering
the similarity between them, we can still conclude qual-
itatively that the SA search strategy, compared to other
mentioned strategies, will improve the search efficiency to
certain extent for the networks with higher critical thresh-
old.

Thus, when designing efficient search strategies, one
should not merely try to intensify the elimination of revis-
iting, but consider the factual topology of the underlying
networks, such as the extent of clustering effect and the
role of the high-degree nodes to the network integrity.

Next, we will present our simulation results for two
quantities, the mean-square displacement and the network
coverage. The mean-square displacement 〈R2(t)〉 of a par-
ticle diffusing in a given space, which is a measure of the
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Fig. 3. Mean-square distance 〈R2〉 as a function of time for
the DANs, RANs, WS and BA networks with N = 9844 and
average degree 〈k〉 = 6 fixed. The dotted line with slope 1 is
plotted for comparison.

distance R covered by an unrestricted RW walker after
performing t steps, is one of the most basic quantities in
random walk theory [16,19]. In most cases, this quantity
is described by an expression of the form

〈
R2(t)

〉 ∼ ta. (3)

The value of the parameter a classifies the type of dif-
fusion into normal linear diffusion (a = 1), subdiffusion
(a > 1), or superlinear diffusion (a < 1). When we con-
sider distinct time steps and nearest-neighbor hops on net-
works, the maximum allowable value of a is 2 [19]. Re-
cently, mean squared displacement was studied in SWNs
and SFNs [16,19]. It was shown that diffusion on their
small-world network model [16] is linear, and diffusion on
SFNs, by varying the value of the degree exponent γ, may
range from superlinear to sublinear [19].

To calculate 〈R2(t)〉 we first, at each time step, find the
minimal distance from the current position of the walker
to the origin (i.e., the smallest number of steps needed for
the walker to reach the origin) using a breadth-first search
method. Then we allow the walker to move through the
network until 〈R2(t)〉 has saturated. Finally, the results
are averaged over different origins of the walkers and real-
izations of the network. We simulate 〈R2(t)〉 for the DAN,
RAN, WS and BA networks with N = 9844 nodes, and
report the results as a function of MC time in Figure 3.
One important feature is the fact that 〈R2(t)〉 finally equi-
librates to a constant displacement value. This is a simple
manifestation of the small diameter of these finite net-
works. Note also that, because of the differences of the
average path length 〈L〉 of these networks (see Tab. 1 for
〈L〉), the plateau values are also different. For the DANs
and RANs, one can find that the slopes of 〈R2〉 are com-
paratively small, especially that of RANs. This can be
explained as a result of their high clustering effect which
induces the walker to spend much time exploring the clus-
ters in the networks, and thus the distance to the origin
increases slowly. From the slope of 〈R2〉, we know that
diffusion both on the DANs and RANs are sublinear (the
value of the slope is smaller then 1), and diffusion both on
the BA and WS networks are superlinear (the value of the

Fig. 4. (Color online) Network coverage Ncov after t steps on
(solid lines, top to bottom) BA networks, DANs, RANs and
WS networks with N = 9844 and 〈k〉 = 6 fixed.

slope is larger then 1). The network coverage denoted by
Ncov is defined as the average number of distinct visited
nodes of the RW walker. Results of Ncov on the four net-
works are presented in Figure 4. In order to decrease finite
size effects, the number of steps performed is nearly two
orders of magnitude smaller than the size of the networks.
The clustering effects of DANs and RANs are exhibited by
their relatively low coverage compared to BA networks.

In summary, we present comparative studies of the dy-
namics of random walks on DANs and RANs. From the
search efficiencies of various strategies simulated in this
paper, we find that the clustering effect of networks can
result in efficiency differences between the NB, NTL and
NQL walks, and likewise, these differences in return can
reflect the clustering properties of networks. For DANs
with large size, the SA random walk is no longer the best
search strategy, which is shown to be due to the crucial
importance of the high-degree nodes to the network in-
tegrity. Thus, while optimizing the search strategy in net-
works, one should take into account the topological prop-
erties of the underlying network, including clustering and
the significance of the high-degree nodes. Since search is a
problem of extreme importance for so many natural and
artificial networks, this finding may be of practical value.
Finally, the simulation results of mean-square displace-
ment 〈R2(t)〉 and network coverage Ncov also show the
influence of the structure of networks on the dynamics of
random walks.
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